
November 2020      The Leading Edge      819Special Section: Distributed acoustic sensing

Using DAS to investigate traffic patterns 
at Brady Hot Springs, Nevada, USA

Abstract
Although not as widespread as their use in other settings, 

there is a growing realization that distributed acoustic sensing 
(DAS) systems are suitable for traffic monitoring applications. 
One such application is demonstrated here using data from a 
surface DAS array recorded at Brady Hot Springs, Nevada, USA. 
Although this data set was acquired with the original intent of 
monitoring changes in a geothermal reservoir, it is shown that 
the data can also be used to identify and monitor vehicle move-
ments on a nearby highway. Analysis of moveout patterns and 
recorded amplitudes confirm that this data set is dominated by 
signals generated by passing vehicles. During nighttime periods, 
the reduced traffic levels provide isolated signals that are more 
straightforward to analyze and interpret. During the day, however, 
increased traffic levels result in the signals from multiple vehicles 
overlapping to create a complex pattern of amplitudes recorded 
on the DAS array, making analysis and interpretation more 
challenging. Nonetheless, these signals can be separated and 
multiple vehicles identified along with their speeds and timings 
through the application of an automated workflow based on 
velocity stacking. The use of DAS for traffic monitoring purposes 
is an emerging technology, and despite challenges stemming from 
the nature of the measurement and the signals recorded, it can 
provide valuable information for the effective management of a 
transport network. 

Introduction
The analysis of distributed acoustic sensing (DAS) data has 

the potential to revolutionize the management of transport net-
works, providing the ability to continuously monitor large areas 
at lower cost than competing technologies. As such, DAS analysis 
is a key component for developing smart city and smart infra-
structure management. Within this sector, an emerging application 
for DAS is the monitoring of traffic patterns on roads and high-
ways, where greater knowledge of vehicle traffic and road condi-
tions form an important input for transport network management. 
Potential applications of DAS technology to traffic analysis include 
identifying hazards such as slow-moving traffic, stopped vehicles, 
or accidents, as well as providing information about wear and tear 
on the road surface.

One of the first published analyses of road traffic signals 
recorded on a DAS fiber was that of Martin et al. (2016), who 
found that vehicle traffic was a dominant noise source for a cable 
deployed alongside a road north of Fairbanks, Alaska. Similarly, 
Huot et al. (2017) identify different types of noise, including 
signals from vehicle traffic, using DAS recordings. In another 
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study, Liu et al. (2018) analyze the signals from passing vehicles 
on DAS fibers. Using a wavelet threshold algorithm, they devel-
oped procedures for noise attenuation as well as analysis of vehicle 
counts and speeds. In a slightly more novel application, Wang 
et al. (2020) use a section of underground fiber to detect and 
analyze traffic from a parade through Pasadena, California. The 
results identify signals from individual parade floats and show 
periods of congestion. Lancelle (2016) and Feigl and Parker (2019) 
discuss two applications of DAS to vibrations caused by passing 
vehicles. The first utilized a 750 m deployment at Garner Valley, 
California, where the authors were able to track the speed and 
position of vehicles. The second example used the DAS array from 
Brady Hot Springs, Nevada (the same site analyzed here), however, 
analysis was somewhat limited, using only a small subset of the 
sensors (approximately 250 of 8621 sensing segments) for a 1-hour 
period. Nonetheless, these results hint at the capability of DAS 
to monitor vehicle activity and traffic patterns. Traffic monitoring 
applications of DAS have also been discussed by Jousset et al. 
(2018), Lindsey et al. (2020), and Yuan et al. (2020). These studies 
have found the traffic signal to be dominated by a low-frequency 
(less than 1 Hz) quasi-static component that can be used to evaluate 
ground properties. Finally, the noise from traffic can also be 
combined with techniques such as seismic interferometry to gain 
information about the subsurface. For example, both Matzel et al. 
(2017) and Feigl and Parker (2019) describe experiments where 
traffic noise constituted a significant part of the ambient noise 
field for the construction of interferometric Green’s functions. 

Here, I demonstrate the applicability of DAS data for traffic 
monitoring using a historical and freely available data set col-
lected at the Brady Hot Springs geothermal project (Feigl and 
Parker, 2019). To date, the analysis of these data has primarily 
focused on their integration with other data sets to provide 
increased resolution and a combined interpretation for the 
mechanical behavior of both rock and fluids in the geothermal 
reservoir (Patterson et al., 2017; Feigl, 2018; Miller, 2018; Feigl 
and Parker, 2019). Here, I take a different approach. Using 
signals from what normally would be considered extraneous 
surface noise sources, I expand upon the work presented in Feigl 
and Parker (2019) to illustrate the potential of DAS fibers for 
traffic monitoring. In particular, I provide analysis of the vehicle 
signals without reference to arrivals on individual recordings. 
As such, the procedure can be applied when the DAS data are 
noisy, and it provides a method for separating the signals from 
multiple vehicles during heavy traffic when the signals overlap. 
Finally, I describe and apply a processing flow to detect and 
analyze traffic during two 7-hour data segments. Although the 
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results are preliminary, they show the potential of combining 
DAS systems with geophysical processing techniques to gain 
information about traffic movements.

Horizontal DAS at Brady Hot Springs
In March 2016, the Brady Hot Springs geothermal project 

was the site of a major and multifaceted geophysical survey — the 
PoroTomo project. Elements of the study included active seismic 
sources, fiber-optic cables for DAS and distributed temperature 
sensing (DTS), 246 three-component seismometers, and pressure 
sensors in observation wells. (For details, see Miller [2018] or 
Feigl and Parker [2019].) Four separate fiber-optic systems were 
installed to record DAS and DTS data in a vertical borehole array 
to a depth of approximately 400 m and a horizontal array deployed 
at the surface (Mondanos and Coleman, 2018).

Here, the focus is on analysis of the DAS data from the hori-
zontal near-surface array deployed at Brady Hot Springs. The 
array layout is shown in Figure 1 and consists of approximately 
8700 m of fiber-optic cable buried in a trench 0.5 m deep. Data 
were recorded for about 15 days during which hydraulic conditions 
in the subsurface were intentionally manipulated. The data were 
collected using sensing segments spaced at 1 m with a 10 m gauge 
length. As described by Miller (2018) and Mondano and Coleman 
(2018), the acquisition system recorded radians optical phase per 
second, which through the application of scalar gain can be 
converted to nano-strain rate.

As can be seen from Figure 1, the array is in the vicinity of 
several potential sources of anthropogenic signals. In addition to 
buildings and infrastructure, there is a major highway (I-80, the 

Dwight D. Eisenhower Highway) 50 m from the western edge 
of the array. There is also a frontage/service road running through 
the center of the array. 

Fifteen days of data were collected; however, not every time 
period is suitable for traffic analysis due to the presence of active-
source acquisition during the deployment. During vibroseis sweeps, 
the signal recorded on the DAS fiber is dominated by the associated 
ground roll. As such, care was taken to select data segments during 
which active seismic was not being recorded.

Traffic signals recorded at Brady Hot Springs
To begin, I examine the DAS recordings for two 7-hour seg-

ments. The waterfall plots in Figure 2 show root-mean-square (rms) 
amplitude recorded by the whole array in 15 s time windows. Several 
features are noticeable from the data. For example, there is a hori-
zontal band of high amplitudes recorded near sensor 4750. This is 
due to the cable being deployed on the ground rather than trenched 
in this location (K. L. Feigl, personal communication, 2020). The 
same is true for some other areas with consistently high amplitudes, 
such as near the cable start (sensors 0–200 approximately).

In general, as would be expected from anthropogenic sources, 
amplitudes are typically higher during the day (Figure 2a) com-
pared to night (Figure 2b). Furthermore, the energy is organized 
into thin near-vertical bands (i.e., short time, large spatial extent 
bursts). These vertical bands have higher amplitudes on sensors 
0–4000 compared to those farther down the fiber. Notably, it is 
these sensors (0–4000) that are closer to the highway running 
down the western edge of the array, and the near-vertical bands 
are also less dense in time during the night (Figure 2b). These 
observations are consistent with the high-amplitude near-vertical 
bands being due to vibrations from vehicle traffic on the highway, 
as we would expect highway traffic to produce larger amplitudes 
on sensors closer to the highway and reduced activity during the 
nighttime hours. It also seems likely that the signals extending 
to higher channel numbers in Figure 2a (for example around time 
2016/03/14 16:45 UTC-6) are related to traffic on the frontage/
service road, as these signals produce high amplitudes on sensors 
on the far side of the array from the highway.

Properties of vehicle signals 
In general, the signals from vehicles are highly variable between 

sensors due to a number of factors, including the variable orientation 
of the fiber, the complex nature of the moving source, and the 
variable coupling of the ground motion to the sensing fiber. There 
are, however, some general properties of the vehicle signals that 
we can use to better isolate and interpret traffic patterns. 

Figures 3a and 3b show an example recording from sensor 
1000 taken during the night with a single dominant vehicle 
signal. Figure 3a shows the time-frequency spectrum evaluated 
over 10 s overlapping windows, whereas Figure 3b shows the 
original time series. Notably, and in contrast to previous traffic 
observations using DAS (Jousset et al., 2018; Lindsey et al., 
2020; Yuan et al., 2020) the signal is not dominated by a low-
frequency (quasi-static) component. Instead, the emergent 10 s 
pulse contains spectral peaks just above 10 and 20 Hz with the 
majority of the energy in the sub-30 Hz band. 

Figure 1. Map of the horizontal DAS array deployed at Brady Hot Springs with 
aerial photo/satellite image background. The black line denotes the DAS cable, 
and the position of every 500th sensor is marked. Note that there is a major 
highway approximately 50 m west of the array and a frontage road running 
though the center of the array.
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The reason for the absence of the low-
frequency component in the Brady Hot 
Springs data is most likely due to the 
increased distances and the rapid ampli-
tude decay with distance for the quasi-
static signal. For example, at Brady Hot 
Springs the distance from the sensors to 
the road is on the order of 50–250 m, 
whereas the studies observing the quasi-
static component of the signal use offsets 
less than 7 m (Jousset et al., 2018; Lindsey 
et al., 2020; Yuan et al., 2020). Instead, 
the pulse in Figure 3 is most likely surface-
wave energy from the moving vehicle 
source. Surface-wave arrivals from vehicle 
sources also are observed by Yuan et al. 
(2020), who note that they dominate the 
vibration signal at greater distances. 
Unlike the quasi-static pulse, which has 
an amplitude decay inversely proportional 
to distance, surface waves have an ampli-
tude decay inversely proportional to the 
square root of distance. As such, surface 
waves are expected to dominate the 
observed wave train at longer offsets, such 
as those used here. 

One curious (and consistent) feature 
for the vehicle pulse in Figure 3 is the 
energy peaks transitioning to lower 
frequency over the duration of the pulse. 
For example, the 20 Hz peak starts off 
closer to 25 Hz at the start of the pulse. 
This pattern of frequency decay is the 
opposite of what would be expected from surface-wave dispersion 
effects because in the presence of dispersion we would expect the 
lower-frequency components to arrive earlier. The signal switching 
between dominant surface-wave mode branches may cause the 
observed frequency shift. However, an alternative possibility is 
that this frequency change is caused by a Doppler shift. This 
would result in arrivals from a moving source being observed with 
a higher apparent frequency while the source is traveling toward 
the sensor. Then, as the source passes the sensor, there is a decrease 
in observed frequency. Finally, the arrivals are observed with a 
lower apparent frequency as the source moves away from the 
sensor. The observed shifts (approximately 2 Hz for the 10 Hz 
band and 4 Hz for the 20 Hz band) are consistent with a vehicle 
moving at 29 m/s (the average speed for cars on the highway) at 
an offset of 50 m from the receiver (the approximate distance of 
channel 1000 from the road) and a medium speed of 300 m/s. 

Data compression
The large number of measurement points and continuous 

recording of DAS systems enable them to generate large data 
volumes. As such, data compression procedures are an important 
part of DAS analysis as they provide increased storage capacity 
and processing efficiency by reducing network throughput. 

Figure 3 shows the results of a compression algorithm applied 
to the vehicle signal. Figures 3a and 3b (discussed in the previous 
section) show the original data trace, and Figures 3c and 3d show 
the same trace after treatment with a compression algorithm. 

The compression algorithm is based on a wavelet packet trans-
form (see Foster et al. [1994] or Wu et al. [2006]) of segments 256 
samples long for each trace. The resulting coefficients are then 
discretized using the minimum number of levels to guarantee a 
relative rms misfit of 99% to the original data. As such, the compres-
sion algorithm is lossy, and the amount of compression provided is 
variable depending on data content. However, the compression does 
not significantly change the vehicle pulse (Figure 3d). Rather, the 
result of the compression is to attenuate some of the noise observed 
in the time-frequency plot (Figure 3c). When applied to data seg-
ments from Brady Hot Springs, typically 80%–85% reduction in 
data volume is achieved, which translates to substantial computational 
and storage savings when analyzing these data.

Band-limited analysis of vehicle signals
While useful for providing a data set overview, the rms 15 s 

average presented in Figure 2 is too coarse to provide much 
information regarding vehicle movements. Similarly, inspecting 
individual traces (Figure 3) is not practical for the thousands of 

Figure 2. Root mean square computed for 15 s time windows for two 7-hour time periods. (a) Daytime activity.  
(b) Nighttime and early-morning activity. Sensor numbers correspond to the labels in Figure 1. As such, the higher 
levels of activity on sensors 0–4000 correspond to the sensors closer to the highway west of the array. 
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sensors in the Brady DAS array. As such, a compromise is to 
compute the average amplitudes in discrete frequency bands for 
short time windows. 

Figures 4 and 5 show average frequency amplitudes in the 
5–30 Hz range over 5 s time windows. This frequency band and 
window length were chosen to maximize energy from the vehicle 
signal and demonstrate the moveout of vehicle signals across 
the array, while also making the processing and examination of 
large time segments practical. 

The half-hour time segment shown in Figure 4 was taken 
during the nighttime and as such contains fewer superposed 
signals, making it simpler to interpret. Based on the moveout 
patterns, the majority of the larger signals appear to be from 
sources moving from northeast to southwest along the highway. 
Notably, vehicles moving northeast to southwest would be on the 
far side of the highway from the DAS array. The fact that they 
produce larger signals in this data segment could be due to these 
being larger sources (i.e., trucks rather than cars). It is also worth 

noting that although the signals are 
stongest on the sensors closest to the 
highway, in many cases they can be 
tracked across the entire array up to 
several hundred meters from the source. 

Figure 5 also shows averages of the 
5–30 Hz band over a half-hour time 
segment. In this case the time segment 
takes place during the day and we 
observe a significant increase in activity 
with many of the signals from different 
vehicles merging together to create a 
complex pattern on sensors 0–3500. 
There are also two examples of signals 
with high amplitudes extending across 
the entire array (at around 15:05 and 
15:28). Comparison of these anomalies 
with the sensor positions (Figure 3b) 
confirms that these signals originate 
from the frontage/service road.

Separating vehicle signals during 
heavy traffic periods

Having established some broad prop-
erties of the traffic signals in the DAS 
data from Brady Hot Springs, I now turn 
attention to a processing flow for isolating 

Figure 3. Waveform examples for a vehicle observed at sensor 1000. (a) Time-frequency spectrum computed using 
overlapping 10 s windows. (b) Corresponding time series. Panels (c) and (d) are the same but use compressed data. 

Figure 4. (a) Average of the 5–30 Hz amplitude spectrum in 5 s windows for a half-hour time segment during the nighttime. Panel (b) shows a time slice (denoted by the 
white line in [a]) projected on to the sensor positions. The reduced traffic at night allows the identification of individual vehicles. 
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vehicle signals during periods when the arrivals from multiple vehicles 
overlap. The method contains two steps: first, signal processing 
techniques are applied to further enhance the arrivals; second, the 
overlapping signals are separated by a stacking or beamforming 
procedure based on the vehicle velocity.

To demonstrate the processing, I consider data from a subset 
of 3665 of the sensors closest to the road and use a rotated sensor 
geometry such that the x-axis is aligned with the road (Figure 6a). 
While a rotated coordinate system is not strictly necessary for the 
processing, it makes the analysis simpler, allowing us to consider 
vehicle velocity in a single direction. The subset of sensors was 
determined after analysis of a variety of different geometries and 
was chosen to minimize the trade-off between gaining greater 
stack power by including more sensors in the beamforming and 
reduced signal-to-noise ratio resulting from the inclusion of sensors 
farther from the road. 

The goal of the signal preprocessing sequence is to enhance 
the visibility of the arrivals from vehicles as well as mitigate some 
of the effects from the complex source and cable geometry. The 
sequence is as follows:

1)	 subtraction of a median trace to remove zero moveout noise 
across the array that Feigl and Parker (2019) attribute to 
vibrations of the interrogator unit

2)	 removal of frequency spikes with an FX median filter (see 
Chambers and Booterbaugh [2018])

3)	 frequency band pass from 5 to 30 Hz
4)	 construction of signal envelopes from the traces (This removes 

expected polarity reversals due to a changing fiber orientation 
relative to the source and mitigates some of the effects of 
surface-wave dispersion. The use of signal envelopes also has 
the effect of lowering the effective frequency content of the 
pulse, thus reducing the sensitivity of subsequent stacking 
operations to variations in road to sensor distance.) 

5)	 smoothing using a moving Gaussian average with sigma of 
0.125 s 

Figures 6b and 6c show the effect of the preprocessing on a 
5-minute time segment of data. As can be seen from the figure, 
multiple vehicle signals that are not identifiable in the raw data 
can be observed in the preprocessed data. In the preprocessed 
data, it is possible to track the signals from vehicles across the 
array. Nonetheless, the data still contain noise, and the signals 

Figure 5. Same as Figure 4 but for a half-hour time segment during the day. The overlapping of arrivals from multiple vehicles on the highway produces a complex 
pattern on sensors 0–4000. The map projection in (b) also shows that high-amplitude signals extending beyond sensor 5000 are consistent with traffic on the frontage 
road trending through the center of the array rather than the highway to the west.

Figure 6. (a) Map of the horizontal DAS array in rotated coordinates such 
that the x-axis is parallel to the highway. The sensors used in (b) and (c) are 
marked in red and numbered. Horizontal dashed lines show the position of the 
near and far lanes of the highway. (b) Five minutes of raw data corresponding 
to the selected sensors. Data have been corrected for bias, but otherwise no 
other processing has been applied. The origin of the time axis is 2016/03/04 
15:10 (UTC-6). (c) Data segment from (b) after application of the preprocessing 
sequence described in the text. The vehicle signatures now can be seen as linear 
features crossing the array.
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are complex with the arrivals from several different vehicles 
superimposed on top of each other. 

Figure 7 shows the application of velocity stacking to the 
5 minutes of data from Figure 6c. As the name suggests, velocity 
stacking is based on aligning the data for different speculative 
vehicle velocities and computing a stack function. In this case, 
the stacking function consisted of a semblance weighted stack 
followed by a time domain Gaussian smoothing operator (with 
sigma 0.05 s).

The principle of velocity stacking is based on response from 
a moving vehicle being a superposition of signals generated by 
the vehicle at each time and position along its path. In the case 
in which an array of sensors is deployed parallel to the path/road, 
a vehicle moving at a constant velocity will produce a planar 
arrival with a slope corresponding to the vehicle’s velocity that 
is offset from the origin. The offset time of the arrival, T0, is a 
function of the distance to the road as well as subsurface proper-
ties. By computing synthetics for a range of different fiber offsets, 
a calibration curve of T0 versus fiber offset was generated and 
then used to correct for time shifts on sensors at different distances 
from the road. The modeling used a homogenous half-space with 
a surface-wave velocity of 300 m/s and attenuation factor (Q) of 
50. The medium velocity was chosen to be consistent with the 
lower end of values for shear-wave velocity in the near surface 
given by Zeng et al. (2017). The signal from the moving vehicle 

was modeled assuming four point forces corresponding to a 
chassis length of 2 m and axle length of 1.5 m traveling at 30 m/s 
parallel to the sensing array. For the receiver distribution used 
at Brady Hot Springs, it was found that the maximum time 
correction required was 0.13 s. This is an order of magnitude less 
than the typical pulse length in the preprocessed data. As such, 
the first-order control on the pulse moveout is determined by the 
vehicle velocity. 

From Figure 7, it can be seen that instead of plotting as 
superposed plane waves, the signals from multiple vehicles separate 
in the velocity-time domain to produce several distinct peaks, 
each corresponding to a traveling vehicle. From the data segment 
presented, it is possible to identify the signals from nine different 
vehicles — four traveling southwest on the far side of the highway 
and five traveling northeast on the near side. 

The strongest signal is for a vehicle traveling at 105 km/hour 
to the southwest. Notably, this signal has both the highest ampli-
tude and the longest time-duration anomaly in this data segment. 
The stack function amplitude or brightness is a function of both 
the input signal amplitudes and their coherency across the data 
set. As such, the longer duration and higher amplitude of this 
anomaly is probably due to it being the result of a larger vehicle 
such as a truck rather than a car. 

The weakest anomaly and hence least robust of the vehicles 
observed in Figure 7 is the signal consistent with a source travel-
ing at 120 km/hour to the southwest. As can be seen from the 
figure, the anomalies’ diffuse nature in this case makes speed 
estimation difficult, and further work is required to isolate this 
signal. However, the position of the vehicle’s anomaly in the 
velocity-time stack suggests it was traveling close to or in excess 
of the Nevada speed limit for rural highways, which is 
75 miles/hour or 120 km/hour.

A final feature worth noting from Figure 7 is the closely 
spaced vehicles traveling at 95 and 117 km/hour to the northeast. 
In the preprocessed data (Figure 6c), it is difficult to distinguish 
these arrivals from each other. However, the velocity-time 
stacking successfully separates these two features, thus demon-
strating the applicability of this technique for the analysis of 
busy traffic periods.

Automated traffic analysis 
The velocity stacking technique can be incorporated into 

an automated processing flow for vehicle detection and traffic 
analysis. I now demonstrate an example of such a workflow 
using the two time periods shown in Figure 2, corresponding 
to 7 hours of daytime activity and 7 hours of nighttime activity, 
respectively. In each case, the time period was divided into 
5-minute segments for processing with 30 s overlap between 
segments to allow for vehicle signals near the start and end of 
segments. The data segments were each subjected to the 
preprocessing sequence and velocity stacking technique described 
in the previous section. Up to 200 local maxima were then 
selected from the velocity stacks for each 5-minute time window 
as potential vehicle identifications. 

Figure 8 shows the time and stack amplitude for selected 
maxima for both time periods. The distributions for both day 

Figure 7. Velocity stacks for the 5-minute processing segment shown in 
Figure 6. (a) Stacks for vehicles heading southwest on the highway (i.e., 
negative x-direction in the rotated coordinate system). (b) Stacks for vehicles 
heading northeast on the highway (i.e., positive x-direction). The timing 
and speeds of nine vehicles are marked with open circles. For reference, 
the vertical dashed lines at +/–120 km/hour (i.e., 75 miles/hour) denotes 
the Nevada state speed limit for rural highways. Vehicle velocity moveout is 
computed relative to the origin of the x-axis in the rotated coordinate system, 
hence the timing of vehicle signals refers to their times at the nearest point 
on the road to the array center.
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and night segments are characterized 
by having relatively few high stack 
amplitude anomalies with a cluster of 
low amplitudes. These low amplitudes 
are effectively a noise floor, and the 
higher-amplitude candidate vehicle 
signals can be separated using a 
threshold criterion. Because the noise 
floor varies over time, it is desirable to 
use a data-adaptive threshold to sepa-
rate the candidate vehicle signals. Here, 
I use the median of the stack amplitude 
computed over 10-minute windows 
plus a user-determined shift of 0.048 
times the maximum stack amplitude 
value detected over both time periods 
(i.e., threshold = median + 0.048 * max 
amplitude). This technique has the 
advantage of allowing for variable noise 
levels as well as periods in which there 
are no vehicle signals. 

Figure 9 shows the velocity and 
times for the candidate vehicle identi-
f ications. In total, 1530 and 458 
anomalies are selected by the threshold 
criterion for day and night periods, 
respectively. Although the amplitude 
thresholding reduces the number of 
anomalies, there is still potential for 
false positive vehicle detections. For 
example, activity on the frontage road 
through the center of the array, other 
noise sources, or crosstalk between 
signals in the velocity stacking all could 
produce spurious signals that would be classed as potential 
vehicle observations. However, these signals will in general 
create anomalous vehicle observations compared to the dominant 
source of traffic from the highway. This can be seen by considering 
the distribution of observed velocities (Figure 9), which for both 
time periods and directions of travel is characterized by a rela-
tively dense central band with outliers having very high or low 
velocities. In Figure 9, these outliers are defined as anomalies 
with a velocity less than 75 km/hour or greater than 135 km/hour. 
Excluding these outliers provides the set automated high-
confidence vehicle detections. 

Table 1 summarizes the detection results for the two time 
segments and directions of travel. In total, 1322 vehicles were 
detected over the 14 hours of data analyzed. Of these, the 
majority 76% (1007) were traveling during the daytime period. 
The distribution of vehicle directions is less asymmetric with 
just under half (614 or 46%) traveling from southwest to north-
east. Average speeds are consistent between the different times 
and directions of travel, with the exception of vehicles traveling 
at night from southwest to the northeast being slightly faster. 
The observed average velocity difference for vehicles traveling 
southwest to northeast at night is small, however, and it remains 

to be seen if this is significant.  Figure 9 also provides an indica-
tion of the vehicle rate, which is fairly consistent for the daytime 
period (approximately 2.4 vehicles/minute). However, during 
the nighttime segment there are periods of reduced activity, 
such as between 04:00 and 05:00. There is also a burst of activity 
going both directions just after 07:00. This may be due to 
increased traffic on the frontage road through the center of the 
array rather than on the main highway. Feigl and Parker (2019) 
note a period of increased activity associated with vehicles 
traveling to a quarry in the early mornings. However, 
13 March 2016 was a Sunday, which makes this less likely, 
and frontage road activity is not apparent in the waterfall plot 
covering this time (Figure 2b). Inspection of the velocity stacks 
and preprocessed data for this time period show two clear 
vehicle signals consistent with highway traffic, with several 
other arrivals close to the detection threshold.

Discussion and conclusion
Although the DAS data set at Brady Hot Springs was not 

designed with traffic monitoring in mind, it has proven to be a 
useful resource for developing and demonstrating the potential 
of DAS arrays for traffic analysis. In fact, analysis of the 

Figure 8. Stack amplitudes and time of local maxima identified from the velocity stacking as part of the automated 
workflow. (a) Maxima identified on the 7 hours of daytime data considered. (b) The same but of the 7 hours of 
nighttime data considered. Stack amplitudes are normalized by the largest value detected over both time windows. 
The gray line is the adaptive threshold used in processing, computed as the median stack amplitude over a 
10-minute window plus 0.048 times the maximum amplitude over both time windows. 
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distribution of amplitudes and moveouts of energy across the 
array shows that this data set is dominated by signals generated 
from passing traffic. 

The observed signals from vehicles are most likely surface 
waves excited by the passing traffic and can be observed at several 
hundred meters from the highway (on the other side of the array) 
in some cases. This in turn makes a case for the analysis of surface 
waves being able to increase the monitoring range from DAS 
fibers compared to analysis of low-frequency (quasi-static) 
components of the wavefield. 

The rms and frequency band analy-
sis both show, unsurprisingly, that 
traffic levels on the highway are reduced 
during nighttime periods. Meaning 
that, during the night, these signals 
are typically isolated and easily identi-
fied. However, during the day, traffic 
levels on the highway are such that the 
arrivals from multiple vehicles can 
overlap. In these periods, time-velocity 
stacks can be used to separate the arriv-
als from individual vehicles and provide 
their time and speed. 

The analysis presented here dem-
onstrates the potential of DAS data to 
analyze and monitor vehicle traffic on 
roads. Nonetheless, there is scope for 
future work in multiple areas on this 
topic, including the optimization of 
preprocessing strategies, the robustness 
of the velocity stacks, the selection of 
vehicle signals, and the analysis of the 
error/precision of vehicle velocity mea-
surements. Further work also could 
consider the influence of surface-wave 
dispersion in the context of wavefields 
generated by moving sources. In the 
present work, the effects of surface-wave 
dispersion are mitigated through the 
application of the signal envelope in 
preprocessing. However, more detailed 
studies in the future may need to take 
this phenomenon into account to 
achieve higher resolution. Increased 
resolution would enable the separation 
of closely spaced vehicles traveling at 
the same speed. In fact, this could be 
the case for the largest anomaly observed 
in Figure 7. 

It is also worth noting that the 
vehicle velocity derived from the time-
velocity stacks is an apparent velocity. 
Although the rotated coordinate system 
used for the stacking minimizes this 
error, calibration using vehicles with 
known speeds may be required to estab-

lish true vehicle velocity in some cases. Improvements in acquisition 
technology will also facilitate traffic analysis. Since the time that 
the data set at Brady Hot Springs was collected, interrogator 
technology has improved, resulting in an order of magnitude 
increase in signal-to-noise ratio (Feigl and Parker, 2019).

Although the automated vehicle detection procedure is 
described here using an existing data set, the procedure can be 
applied equally in real-time monitoring scenarios. Besides the 
preprocessing settings, only two additional parameters are used 
in the automated vehicle identification — the threshold shift 

Table 1. Results of the automated vehicle processing workflow. Maxima refers to the number of local maxima 
identified in velocity stacks. Candidate vehicle identifications refers to the number of observations remaining after 
the stack amplitude thresholding described in the text. Vehicle observations are those results remaining after 
removal of the velocity outliers. 

Maxima Candidate  
vehicle 

identifications

Vehicle 
observations

Average speed 
(km/hr)

Day traveling SW–NE 3149 713 468 104
Day traveling NE–SW 3163 817 539 –105
Night traveling SW–NE 4872 222 146 110
Night traveling NE–SW 4772 236 169 –105

Figure 9. Vehicle observation times and velocities for the two 7-hour sections of data examined during (a) daytime 
and (b) nighttime. Black points are the high-confidence observations obtained after the removal of the outliers 
(gray) based on the vehicle velocity. 
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criterion and the range for reasonable vehicle velocities — and all 
input parameters can be adjusted on the fly if necessary. The large 
data volumes associated with DAS acquisition also make com-
putational resources a key consideration. This is particularly true 
if processing is to be performed near the acquisition unit, in which 
case power consumption is often a key constraint. However, the 
application of data compression allows for efficient transfer of the 
DAS data to external/cloud computing facilities for analysis. 
Although the processing sequence described here does not have 
a large computational footprint (compared to many seismic pro-
cessing operations), it is easily parallelized. 

DAS is an attractive alternative to many traditional traffic 
monitoring technologies due to its lower installation and main-
tenance cost and its less-intrusive nature. However, this application 
of fiber-optic sensing is still an emerging technology, and numerous 
issues must be overcome before its widespread adoption. Issues 
such as the large data volumes, instrument noise, complex nature 
of the sources, directionality of the DAS measurement, and 
coupling of the ground movement to the fiber all make these 
challenging data sets to analyze. Nonetheless, overcoming these 
challenges can provide an important ingredient in the delivery of 
safer and more efficient transport networks. 
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